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Nonlinear mode conversion with chaotic soliton generation at plasma resonance
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The resonant absorption of electromagnetic waves near the critical density in inhomogeneous plasmas
is studied. A driven nonlinear Schrddinger equation for the mode-converted oscillations is derived by
multiple-scaling techniques. The model is simulated numerically. The generic transition from a station-
ary to a time-dependent solution is investigated. Depending on the parameters, a time-chaotic behavior
is found. By a nonlinear analysis, based on the inverse scattering transform, solitons of a corresponding
integrable equation are identified as the dominant coherent structures of the chaotic dynamics. Finally,
a map is presented which predicts chaotic soliton generation and emission at the critical density. Its
qualitative behavior, concerning the bifurcation points, is in excellent agreement with the numerical

simulations.

PACS number(s): 52.35.Sb, 52.35.Mw, 05.45.+b

I. INTRODUCTION

The interaction of intense electromagnetic radiation
with inhomogeneous plasmas is a subject of considerable
interest in several physical applications. We mention,
e.g., laser-plasma interaction experiments related to con-
trolled fusion [1], or microwave interaction with plasmas
[2]. In the present investigation we consider the problem
of resonant absorption of electromagnetic waves. Let us
have oblique incidence onto an inhomogeneous plasma
with weak gradients. Resonant absorption takes place at
the so-called ““critical density,” where the frequency of
the electromagnetic wave coincides with the local plasma
frequency. There the electromagnetic wave is converted
into an electrostatic plasma wave [3-5]. Without damp-
ing, the wave energy convection, due to the propagation
of the plasma wave towards the low-density region of the
plasma, becomes important, whereas for strong damping,
the plasma-wave convection can be neglected [6].

The linear approximation, when the plasma density is
not modified, breaks down even for relatively weak inten-
sities of the incoming wave since the amplitude of the res-
onant plasma wave can reach large values in comparison
to the incident electromagnetic wave [3]. Then the pon-
deromotive force associated with the high-frequency elec-
trostatic field is non-negligible and leads to nonlinear
modifications of the density profile. Extensive studies of
the resonant absorption during the past years show in-
teresting dynamical behavior of the plasma wave near the
resonance point. In the linear approximation, the
steady-state solution is the modified Airy function [3].
For the more realistic model, including ponderomotive
force effects, the solution of the model equation—the
driven nonlinear inhomogeneous Schrodinger equation
(DNLIS) —bifurcates from the steady-state regime into
time-dependent solutions. Adam, Serveniere, and Lavale
[7] observed periodic emission of localized wave packets
in one region of the parameter space, whereas for strong
driving fields the emission is less organized. The genera-
tion of localized wave packets has also been experimen-
tally confirmed [8].

In this paper we describe the creation and the emission
of localized pulses from the critical density. In Sec. IT we
derive, with a multiple-scaling technique, the model equa-
tion from a two-fluid description of the plasma. The re-
sults of extensive numerical simulations of the model are
presented in Sec. III. They clarify the transition from the
stationary state to a time-dependent attractor in the
chaotic regime. The route to chaos is identified by
specific diagnostics. In Sec. IV we examine the spatial
structures of the numerically observed solutions by a
nonlinear analysis. The algorithm is based on the inverse
scattering transform (IST) for the integrable equation,
which corresponds to the model equation if the driving
magnetic field is neglected. We show that the localized
pulses can be described, from their creation at the critical
density up to their asymptotic-time behavior, by the
multisoliton-solution of the cubic nonlinear Schrédinger
equation. The results of Secs. III and IV indicate that the
complex time-dependent behavior can be modeled by a
low-dimensional system. In Sec. V we present such a
low-dimensional model, which describes the chaotic soli-
ton generation at the critical density. For nearly all bi-
furcation points we get an excellent agreement with the
numerical simulation. A brief summary is given in Sec.
VI.

II. MODEL EQUATION

In this section we derive by multiple-scaling techniques
a simplified model equation. It describes the nonlinear
coupling between high-frequency, nearly electrostatic
processes and the low-frequency plasma dynamics in the
case of resonant absorption of electromagnetic waves in
fully ionized inhomogeneous plasmas. As illustrated in
Fig. 1 we consider a plane electromagnetic wave being
obliquely incident onto an inhomogeneous plasma with a
density gradient in the x direction. The electric-field vec-
tor E lies in the x,y plane, which also contains the wave
vector k, of the incident (p polarized) wave; 6, is the an-
gle of incidence.
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FIG. 1. Oblique incident of electromagnetic waves.

If we consider physical situations where the charac-
teristic length L of the density gradient is much larger
than both the Debye length A, and the wavelength of the
incident wave Ikol~1 we can restrict our analysis to the
vicinity of the critical point x.. At the latter the wave
frequency w, of the incident wave coincides with the local
plasma frequency ,, and we approximate the plasma
density by

1+=

I (1

ho=hn,

In (1) we have chosen x, =0. Following the linear theory,
which is summarized in Ref. [3], we find that (i) the in-
cident wave is reflected at a position x, given by
®pe(x,)=wocosby, and (ii) that in the resonance region
near x =0 the main electric field is electrostatic and
parallel to the density gradient. In the cold inhomogene-
ous plasma situation one obtains at the resonance posi-
tion a singularity of the mode-converted electric field
[23]. This unphysical singularity is removed by col-
lisions, thermal convection, or nonlinear effects [5,9]. In
the case of, e.g., a thermal plasma,
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holds for the electric field at n,(0)=n,. In (2) |E,| is the
amplitude of the incident electromagnetic wave and ®(§)
is the Ginzburg-function [3], with £=(k,L)!"3sin(8,).
The maximum value of ®(£) is in the range 0.5°<6,<3°
and for a typical experiment [8] we find from (2)
|Ex |maxz3o|E1I'

This result of the linear theory calls for a nonlinear
theory, which was first presented by Adam, Serveniere,
and Lavale [7]. In their derivation of a DNLIS equation,
they assumed that the tunneling component of the mag-
netic field is constant near the critical density. To verify
this assumption one can use a multiple-scale formalism.
Let us present the general outline of such a procedure.

We start with the two-fluid description and introduce
dimensionless quantities via

O(£) (2)
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where the index a=i,e denotes ion and electron contri-
butions, respectively; n,, v,, m,, and q,(q,=—e) are
the density, velocity, mass, and charge of the species a.
The temperature T, is given in eV and the ratio of the
specific heats is denoted later on by y,. Truncating in
the usual manner, we can write
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where we introduced the electron thermal velocity vy,
and the electron Debye length Ap=vy, /w, The reso-
nance frequency w,(x,) is given by

w0=wp(xc)=[w12,e(xc)+a)12,i(xc)]’/2 , (14)

where o, and w,; are the plasma frequencies of electrons
and ions, respectively. If one chooses (as mostly done in
the literature) @,=w,,(x.), the resonance position is
shifted by an amount proportional to m, /m,;.

In the following we distinguish between the high-
frequency and the low-frequency time scales, and split
each quantity in its high- and low-frequency parts, e.g.,

A,=Hg(X)+al+m (15)

This is the starting point for the scaling. We assume the
incident electromagnetic wave to be of small amplitude
[|E;|=8%<1], with

8=(V3A,L ~H3, (16)

and make the following ansatz for the high-frequency
quantities:

a=Re([8*71%(6x,5%,8%T)+ -+ - lexp( - -+ )}, 17
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+ - Jexp( -}, (23)
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For the reason of lucidity we presented in (17)—(25) only
the lowest orders and introduced the abbreviation

— Ure _
exp( -+ - )=exp |i 1/3-:—a0;7—2t , (26)

with ay=sin(6,). For the low-frequency quantities, we
assume
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If, in addition, we scale

ay=8, vy, /c=8, \/TnTm,-zS, (33)
introduce the slowly varying variables

Xx=06x, y==08% , 7=8%, (34)

and neglect the higher harmonics, we obtain after some
algebra in order &°

(57 'ag)BHO=i8 B+ e EFO+ L OE O~ 5E1°
(35)
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In analogy to the result for the high-frequency part, we

get in order 8* for the low-frequency electron density
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Equations (35) and (36) describe the resonant absorption
at the critical density.

Some remarks: By introducing a smaller scaling of the
transversal component of the electric field [E,~(vg, /
¢)E, ], we ensure that the magnetic field does not depend
(to lowest order) on the longitudinal coordinate, which
means that the field B/® is given by its value at the
reflection point and does not vary on the ‘“slow” time
scale 7. If one neglects in (35) the nonlinear terms, one
obtains the linear theory [5].

Introducing the new variables ¢ =(ayB,/ 8)_15)_{’0 and
N=(axB,/8) 2aL°, we can write

id,q+32q—(x+pN)g=1, (38)
V22N —32N=0alq|*. (39)

In (38) and (39) (and also in the rest of this paper), space
and time variables are denoted by x and ¢, respectively.
The parameters in the system are defined by

m.
ayB 2
p= 8°]. 41)

We have assumed for the high-frequency processes an
adiabatic response whereas the (low-frequency) electrons
are isothermal. The system (38) and (39) was firstly dis-
cussed by Adam, Serveniere, and Lavale [7] and reduces
in the case of a homogeneous plasma without driving to
the well-known Zakharov equations [10].

If one changes without any additional assumption the
scaling in the way that the mass ratio m,/m; is propor-
tional to 8, the first term in (39) will drop (during the fact
that ¥?2<<1) and one gets N=—|q|2. Inserting this in
(38) we end up with the driven nonlinear inhomogeneous
Schrodinger equation (DNLIS)

id,g+3%q+plgl’g—xq=1. 42)

Equation (42) is the basic model for our subsequent inves-
tigation of the nonlinear resonant absorption at the criti-
cal density in inhomogeneous plasmas.

The derivation by a multiple-scale technique helps to
clarify the validity of the model equation. The most in-
teresting point is that in this approximation the whole
dynamics of the physical system described by the DNLIS
equation depends only on one parameter p, which mea-
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sures the ratio between the nonlinear ponderomotive
effects and the driving magnetic field.

Before studying the solutions of (42), we refer to some
important facts of the model equation. If one neglects
the driver in (42) (set the right-hand side equal to zero),
the DNLIS equation reduces to the nonlinear inhomo-
geneous Schrodinger (NLIS) equation

id,q +3iq+plgl’g—xg=0, (43

~

which is integrable by the inverse scattering transform
[11]. This is the reason that we call (43) “the correspond-
ing integrable equation.” Later on, we shall use the fact
that Eq. (43) can be transformed via

x=x+1?, (44)

=t , (45)
172

g(x,1)= % g(x,t)expli(xt—21%)], (46)

into the well-known integrable NLS equation
i34 +32+2|g|’g=0. 47

III. TRANSITION TO CHAOS

To clarify the transition (with increasing values of p)
from the Airy-type solution [3] in the linear stationary re-
gime to the time-dependent and irregular pulse emission
as observed by Adam, Serveniere, and Lavale [7], we
simulated the solution of the DNLIS equation numerical-
ly. We developed a new nonlinear unitary numerical al-
gorithm of second-order accuracy in time and space,
which reduces in the linear limit to the well-known
Crank-Nicholson method [12]. Due to the semi-implicit
structure there exists no Courant-Friedrich-Levi condi-
tion and thus the algorithm is unconditionally stable.

To simulate the behavior of localized wave packets in
the infinite system we introduced open-end boundary
conditions, which we implemented by artificial damping
regions on the left and right side of the physically
relevant regime, and in addition a cutoff algorithm
beyond the left damping region.

In agreement with the analytical result, the numerical
simulation results for p =0 in the final asymptotic (in
time) solution

g, =~ —tlin;i fotexp[ —1P—ixrldT .

For p <0.55, the behavior is only quantitatively modified
but qualitatively the same. The solutions are asymptoti-
cally stable and of the modified Airy-function type, as
shown in Fig. 2. For x >t o one gets, as expected,
g;~x '+0(x 3. Remarkable is the fact that all sta-
tionary solutions have nonvanishing imaginary parts.
Real stationary distributions, which one gets, e.g., by
solving the time-independent equation, are unstable.

For p >0.55 the dynamical behavior of the system is
completely changed. As has been observed by Adam,
Serveniere, and Lavale [7], the stationary solutions un-
dergo a modulational instability and for finite values of p
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FIG. 2. Stationary Airy-type solution (p =0. 3).

a new type of solution appears, which is depicted in Fig.
3. It can be described by the following physically
motivated picture. A single localized pulse is created
near the critical density (x =0). Its amplitude grows un-
til its phase decouples from the constant driver. Then the
wave packet moves accelerated down the density gra-
dient. After being emitted from the region of critical
density the pulse shape adjusts itself to an asymptotic sol-
itonlike structure. From the remaining structure at x =0
a new wave packet is created and the procedure described
above repeats. The dynamics of the pulse emission is sen-
sitively depending on the parameter p. The behavior
beyond the first bifurcation at p =~0.55 was investigated
in a series of numerical experiments. Typical results are
shown in Figs. 4-7. In each case, we show the frequency
spectrum and Poincaré plot Im{gq, ,;} versus Im{g,},
where g, =q(x =0,t=7,). The Poincaré times 7, are
defined by the changes of Re{g(x =0)} from negative to
positive values.

In the interval 0.55<p <1.08 the emission of wave
packets is periodic. In Fig. 4 we observe one frequency
and, of course, its harmonics, whereas in the Poincaré
plot a convergence to a fixed point occurs. This corre-
sponds to periodic solutions and to a limit cycle in the re-
duced phase space g(x =0,¢). The emission frequency
increases with increasing p.

At p=1.089 a period doubling occurs. In the reduced
phase space the limit cycle splits up into a two-cycle, and
in the frequency spectrum (Fig. 5) a new frequency, at the
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FIG. 3. Regular emission of localized pulses in the dynamical
regime (p =1.0).
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FIG. 4. Poincaré plot and frequency spectrum in the periodic regime (here p =0.7).
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FIG. 6. Same as Fig. 4 for p=1.16. A second (incommensurate) frequency appears and leads to satellites in the spectrum. The
emission of solitons is quasiperiodic.
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FIG. 7. Same as Fig. 4 for p =1.27. The emission of solitons is chaotic.

half of the original one, occurs. This subharmonic bifur-
cation leads also to a doubling of the original fixed point
in the Poincaré plot. The spacing between the fixed
points, and also between the corresponding two-cycles,
increases with increasing p. The situation is as follows:
After the emission of a pulse with lower amplitude a new
wave packet is created at the critical density. The new
pulse is smaller and has larger amplitude than the previ-
ous one. A further increase of the control parameter
leads to a different bifurcation cascade as predicted after
the first period doubling.

At p=1.16, a second, within the numerical accuracy
incommensurate, frequency appears. As seen in Fig. 6
this frequency is much smaller than the original one and
leads to satellites in the spectrum. In the Poincaré inter-
section, the two previous fixed points split up and change
to circles that will be completely filled with increasing
time. In the reduced phase space the two-cycle starts to
oscillate and the dynamical behavior is quasiperiodic on a
two-torus. The amplitudes and widths of the successively
emitted wave packets are all different from each other.

For p > 1.25 the two-torus breaks down and no regular
emission is distinguished. In the frequency spectrum
(Fig. 7), we observe a broadband distribution, which indi-
cates chaos. Thus the model system leads to a chaotic at-
tractor according to the Newhouse-Ruelle-Takens [13,14]
route to chaos.

We should point out that the behavior described above
does not depend on the x point of inspection (which
defines the reduced phase space). To check whether the
chaotic attractor is of low dimension we determined the
correlation dimension D, [15,16] in the vicinity of
p~1.25. For the numerical estimation we approximated
the exact value of the correlation function ¢,(£) by the
method of Ref. [17]. The results are depicted in Fig. 8.

In the periodic and two-periodic regime we obtain
D_ =1, whereas in the quasiperiodic regime the correla-
tion dimension D, =2 agrees with the dimension of the
observed torus. For p=1.25 we get D,=4.38 as the
fractal dimension of the chaotic attractor. The picture of
a quasiperiodic route to chaos for soliton generation at
the critical density is meanwhile well established in litera-
ture [18-21].

IV. COHERENT SPATIAL STRUCTURE
WITHIN CHAOS

The aim of this section is to clarify the spatial structure
of the solution and to discuss the observed self-
organization of the chaotic system. As was done previ-
ously for other nonlinear systems [22], we try to identify
solitons of the corresponding integrable equation (the
NLIS equation) as the main constituents of the dynamics.

We split the whole x space in two regions. In the first
region, the convective regime (x <<0), all pulses are
well-separated; see, e.g., the three left pulses in Fig. 9.
Near the critical density (at x =0) in the creation region,
several pulses overlap. This characteristic behavior is
preserved at all times ¢ and for p = 0.55.

First we discuss the convective region. There, a chain
of pulses moves accelerated down the density gradient to
regions with lower plasma density. The amplitudes and
the widths of the pulses remain constant. For the posi-
tion x,, of a single pulse as function of time ¢ we found
xp =~ —t. The phase of the pulse varies linearly with x
for a fixed time. From the fact that the distance between
different pulses remains constant it follows that the ac-
celeration is the same for all pulses.

These results lead to the conclusion that the solution of
the nonintegrable DNLIS equation in the convective re-
gion is mainly a N-soliton solution [23] of the integrable
NLIS equation. If the distances between the solitons in
the N-soliton solution are very large, the separated soli-
tons approximately decouple and form a chain of single
pulses as observed in the numerical simulation. One ob-
tains for each pulse the one-soliton solution
172

2n sech[2n(x +12+4£t —x)]

q,(x,t)=

Xexp{ —i[(26+1)x + 113+ 2622
—4* =& =g} .

The characteristic relations between amplitudes, widths,
phases, and positions of the numerically observed pulses
are the same as in (48) [see, e.g., Fig. 10]. If we compare
the pulses, obtained from numerical simulation, the devi-

(48)
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FIG. 8. Correlation functions in the (a)
periodic (p=0.7), (b) quasiperiodic (p =1.2),
and (c) chaotic (p =1.248) regimes. The con-
vergence of the correlation function for
different embedding dimensions is depicted.
The slope of the straight dashed lines corre-
spond to the correlation dimension D, and
leads to the following values: (a) D.=1; (b)
D.=2;(c) D,=4.38.
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lq(x,t)]

FIG. 9. Numerical solution |g| at a fixed
time ¢t and p =1.225.
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X

ation measured in the L, norm of the difference of the
functions is less than 5%. Therefore the solution of the
DNLIS equation in the convective region is the N-soliton
solution of the corresponding integrable NLIS equation.
In the creation region near the critical density, the
identification of solitons and the calculation of the soliton
parameter is not so easy as in the convective region. To
expand the solution of the DNLIS equation in terms of
N-soliton solutions, we perform a nonlinear diagnostic by
an algorithm based on the inverse scattering transform
and a Downhill-Simplex algorithm. The diagnostic with
IST, for the first time presented in Ref. [24], to our
knowledge, was previously used successfully [25] for oth-
er types of disturbed NLS equations. Let us briefly re-
view the IST for the integrable case of the NLS equation

id,q+3d2g +2|q|’¢=0. (49)

The initial value problem of (49) has a unique global solu-
tion if the L, norm of g and 9,4 is finite [26,27]. The

FIG. 10. Numerical solution (bold line) and the one-soliton
solution (thin line) as followed from diagnostic with IST.

.00 5.00

solution of (49) is interpreted as a potential in the
Zakharov-Shabat scattering problem [28]

—i§ q(x,t)

ONVLD= | _yeix,n) it

vix,t) . (50)

The time evolution of the scattering data (e.g., §) is de-
scribed by ordinary differential equations, for which the
initial values at t=0 are calculated from (50). Solving
these ordinary differential equations for #>0 one can
construct the solution of (49) from the scattering data at
t=0[29].

For the diagnostic with the IST we only need the
scattering data. Therefore, we define two pairs of linear
independent solutions ¢, ¢ and ¥, ¥ of the scattering
problem (50) by their asymptotic behavior

+1 _ )
¢~ 1 o e i $~ et for x —— o (51)
and

0 ) _ +1 )
v~ |4 et P~ 0 e % forx—>—+o . (52)

The transformation matrix (or scattering matrix)
¢ a(g) b(g) v
¢ b(&) —a)| ¥

between ¢, and 1,9 defines the scattering data a,a,b,b.
In addition to the continuous spectrum ({ real), there ex-

(53)

ist discrete eigenvalues §,=¢&,+in,, (k=1,...,N)
which are the complex zeros
a(8y,t)=0 (54)

of the analytic continuation of the scattering coefficient a
into the upper half plane. The set of scattering data

(S} =([B,¢ real ;[§i, b ¥ =1} > (55)

with B=b(&)/a(f) for & real and
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by =¢(&r,x,t)0 &y, x,t), contains all necessary infor-
mation to reconstruct the potential g(x,¢) for all times
t >0 [28].

If we use the IST as a diagnostic tool for nonintegrable
systems, it is sufficient to know the discrete eigenvalues
§r and the scattering coefficients b, and a(&,t), from
which one can calculate in principle the amplitudes,
widths, positions, and phases of the solitons. If, for ex-
ample, the spectrum contains one and only one discrete
eigenvalue {;=§,+in,, the potential g(x,?) is a soliton
of type

g, =2msech[27n,(x +2&t —x)]

Xexp{i[ —2&x +4(i—EDt+ o] - (56)
The position x,, and the phase ¢, are given by
1o | 1o (57)
X0 n 2171
and
po=1arg(Cy) , (58)
respectively, with
b(&))
Co= ule) ey (59)
deale=g,
(a)
la(x bt

la(x)]

The explicit form of the N-soliton solution of (49) is more
complicated and was for the first time given by Hirota
[23], to our knowledge.

To analyze the dynamics of the DNLIS equation in the
creation region we insert the solution g(x,#) into the
scattering problem (50). Solving (50) numerically we ob-
tain a(£,t) and b, (§,t) and from the solution of (54) we
get §,. Due to the reasons that the NLIS equation is in-
variant under translations in time and that the transfor-
mation from the NLIS equation to the NLS equation (49)
for t=01is
172

£ gdnLis(x,0), (60)

,0)=
gnis(x,0) Py

it is sufficient to solve the scattering problem (50) for the
NLS equation [instead of the scattering problem for the
NLIS equation]. '

A good measure of the quality of the procedure de-
scribed above is the L, norm of the deviation of the nu-
merical solution gpyp s from the analytic N-soliton solu-

tion g0

X, )
fx dleDNLls(x:t)'—‘INso,|
R

F(t)=—"— : (61)
fx dx lgpnpis(x, 1)
R

FIG. 11. (a) Space-time-plot of a numerical solution (absolute value of g) for one period at p=0.7. (b)—(d) Absolute value of g for
numerical solution (solid line) and N-soliton solution (dashed line) for (a) £ =0.03; (b) t=1.01; (c) t =1.5.
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From the IST we get a rough estimate of the eigenvalues
& (t;), the positions x(,(¢;), and the phases @, (¢;) for
the soliton k at time t;. With these values we enter a
Downhill-Simplex algorithm [12] to minimize the error
(61). In addition we check the deviation in energy, which
is given by

*r 2_ 2
fXL dx(lgpnys! |‘1N50]] )
FE:

(62)

Xp 5
fx dx |gpnyis|
L

The minimization leads to an error F <8% in the L,
norm and Fp <8% in energy. Thus we have found a
qualitatively good method to expand the numerical solu-
tion of the DNLIS equation in terms of solitons of the
corresponding integrable equation.

Now we present some results of the diagnostic for the
periodic case at p=0.7. The single solitons of the N-
soliton solution are labeled by S; and the corresponding
soliton  parameter by §,=&,+in,, xo and
@or(k=1,2,3,...) The space-time plot of the numeri-
cally obtained solution is depicted in Fig. 11 for one
period T=1.75. Figures 11(b)-11(d) show the solutions
lg(x,t)| at £=0.03, 1.01, and 1.5.
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From the diagnostic we obtain the dynamic of the soli-
ton parameter as plotted in Fig. 12. For ¢t =0 there are
two well-separated solitons in the interval [—10,5]. The
behavior of the eigenvalue of soliton S, (at x4 =~ —35)
shows the characteristic dynamic of a soliton in the con-
vective region, namely, weak oscillation of amplitude 7,
and a linear increasing of &, with time ¢ [see Figs. 12(a)
and 12(b)].

At time t =0.03 a new soliton (S;) is created at the po-
sition xy, = —0.6 of the old soliton S,. The real part of
the new soliton £;=0.14 is finite and the phase @,; is be-
tween 7 and 2. [see Figs. 12(b) and 12(d)]. During the
growth of the soliton S, near the critical density at x =0,
the newly created soliton S; moves in the overdense re-
gion up to x,;=~2.5 [see Fig. 12(c)] with nearly constant
phase ¢@,; [see Fig. 12(d)]. Now the phase ¢,; decouples
from the driver, the soliton S5 starts its journey down the
density gradient into the convective region [see Fig.
12(c)], and the amplitude 7,; increases rapidly to its
asymptotic value [see Fig. 12(a)]. In the distribution
function |g(x,7~1.01)| the solitons S, and S, are
separated and the soliton S, leaves the interval [ —10,5]
[see Fig. 11(c)]. At t=1.4 the soliton S, leaves the
creation region and at ¢t = 1.76 one period is finished.

¢, (b)

W]

/ // |
LT
A

/
|

7

'

B

(=]
o
T
~
o k===

3

t

FIG. 12. Dynamic of soliton parameters for p=0.7. (a) Imaginary parts of the eigenvalues, (b) real parts of the eigenvalues, (c)

positions, and (d) phases of the solitons.
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This diagnostic was done for various values of the pa-
rameter p. The characteristic behavior described above
holds for all parameters, except in the two-periodic re-
gime where, instead of the two-soliton solution, a three-
soliton solution in the creation region was observed.

Thus we have shown that the observed pulses in the
DNLIS equation are the solitons of the corresponding in-
tegrable NLIS equation. In the convective region these
solitons are well separated, whereas in the creation region
near the critical density an interaction of several solitons
takes place. New solitons are generated at the position of
the rightmost soliton with finite real parts of &.

V. A LOW-DIMENSIONAL MODEL
FOR CHAOTIC SOLITON GENERATION

The numerical solutions of the DNLIS Eq. (42) suggest
to describe the transition from periodic soliton generation
to chaotic behavior in time by a finite-dimensional model.
In this section we construct in two steps a low-
dimensional model, which is based on the soliton solu-
tions of the integrable NLIS Eq. (43). In the first step, we
derive in the creation region a system of coupled ordinary
nonlinear differential equations for time-dependent pa-
rameters (the so-called “collective coordinates’) of a soli-
tary structure. In the second step a nonlinear map is for-
mulated, which describes the generation of solitons at the
critical density.

By the method of collective coordinates the dynamics
of a partial differential equation is (approximately) re-
duced to a finite set of ordinary differential equations.
The success of this method depends strictly on the chosen
trial functions, which are solutions of the corresponding
integrable equation.

For the generalized DNLIS equation

i9,q+32g+plgl’g=axq +B, (63)

we choose the trial function
172

q(x,t)= {% A(t)f(x,t)ei¢xt) (64)
with

fx,t)=sech{B(t)[x —xy(¢)]} (65)
and

d(x,t)=k(t)[x —xy(2)]+@y(t) . (66)

The motivation for (63) is the following. First, (63) con-
tains the exact solution of the integrable NLS equation
(@=B=0), if A(t)=B(t)=2n, xy(t)=4Et+x,(0),
k(t)=—2&, and @y(t)=4n*—E>)t+¢,(0). In addition,
we can model with A4(z) and B(¢) solutions whose ener-
gies are higher than those of a single soliton. Here the in-
tegral part of the ratio N = A4 /B specifies the number of
solitons of the NLS initial value problem [30].

There exist several methods to derive a closed set of or-
dinary differential equations for the set of parameters
{A,B,k,xq,90}. Here, the ‘variation-of-action
method” (VAM) [31] does not lead to satisfactory results,
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since one ends up with a relation between amplitude A4
and inverse width B, which forbids solutions which differ
from the one soliton of the unforced equation. To bypass
this problem, Larroche et al. [32] introduce a larger test
function space by a so-called “chirp” in the phase ¢(x,t)
being proportional to [x —xy(z)]%>. The results are
effectively the same as in the paper of Bussac et al. [33].
The authors of the latter paper used a different method to
derive a low-dimensional system, which is a mixture of
the “momentum method” and a local approximation of
the partial differential equation. Due to the fact that they
did not average over the whole space their results de-
scribe only a small part of the whole dynamics, namely
the periodic soliton emission.

To derive a more general map let us start from the
momentum method. We use the first three conserved
quantities of the integrable NLS equation (@==0), i.e.,
the density

I,= f+°°dx|q(x,t) 2=const , (67)
the momentum

Ilzif+wdx{qaxq*~*q*axq}=const , (68)
and the energy

Izzfj:dx [§|q|4——}8xq12]=const . (69)
In addition, we incorporate the “center of mass”

M= [ “dx{x|ql?} (70)
and the “phase”

+ o
Myt)= [ Tdx{lq|®,¢} . (71)

Clearly, in the case of the DNLIS equation (@0 and
B#0), the quantities Iy, I, and I, are not constants of
motion. Instead we obtain the following system of equa-
tions:

%Ioziﬁfj:dx{q*—q} , 79
Sh=—2al,, (73)
%12=a11—|—iij:dx{P|q’2(q_q*)} ’ 74
%Ms:ll+iﬁf_+wwdx5X(‘1—(J*)} , (75)
d

E;Md,:]z—aMs—l—%fjwdx (plal*—Blg+q*)} . (76

Inserting the trial function (64) in the system (72)-(76),
we end up with equations of motion for the collective
coordinates { 4,B,k,x,¢q}. For the later discussions it
is very useful to introduce the new collective coordinates
“soliton number” N(¢) and “energy” M(t):

A1) 44°%1)

B1) » M= g0 7D

N(t)=
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One gets the following system of coupled nonlinear equa-
tions of motion for the set {N,M,k,xq,@.}:

d _ o3 N* 16k>N* | .
dtN— \/2p i JRIve sin(gg)sech(]) ,
(78)
% =—B _sm @o)sech(I) (79)
% —B——%sm(%)sech(I)*a, (80)
2 3
%xozzk —3(—2}—6—;737 AA; —cos(@glsech(Dtanh(D) ,  (81)
d M?
E;‘Pozkz"axo_%ﬁf(l —4N?)
N
B\/Z Mcos(<po)
2
xsech(D) |1+ 27K tanh() (82)

where we used the abbreviation I =27kN?/pM.
If we decouple the system from the driver by setting
=0, Eqgs. (78)—(82) can be solved, and we obtain

A=B=const , (83)
k(t)=—t+k(0), (84)
Xo(t)=—124+2k(0)t +x4(0) , (85)
@o(t)=213—2k(0)t*+[BX(t)+k*0)]t

—x4(0)t +@4(0) . (86)

With this time dependence of the collective coordinates,
the test function (64) is exactly the one-soliton solution of
the NLIS Eq. (43). From the numerics it is clear that the
pulses converge in the convective region to that form.

In the case of the full DNLIS Eq. (63) we solve the
complete system (78)-(82) with a Kutta-Merson algo-
rithm [34]. The main difficulty is the choice of the initial
values for the collective coordinates {N,M,k,xq,@q}.
With the results of the IST diagnostic, presented in the
last section, we are able to fix the initial conditions,
which are nearest to the numerical solution. Due to the
invariance under time translations we choose t=0. As
described before, a new soliton is generated at the posi-
tion of the preceding soliton; so in general x,(0)70. For
the x-dependent part of phase ¢ we set, in agreement
with the results of the simulation, k(0)xy(0)=~0.08. The
lowest detected value of the imaginary part 5 of the ei-
genvalue § supplies the initial value for the inverse width
B(0)=27(0)~=0.2.

Together with the amplitude A4 the energy of the nu-
merical solution increases after the generation of a soli-
ton. In our low-dimensional model, the energy M(z) fol-
lows from

d

ZM~ —sin(g,) , (87)
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which shows that initially the phase ¢4(0) has to be in the
range 7 < Qg < 2.

A characteristic time evolution of the collective coordi-
nates is shown in Fig. 13. The typical increase of both,
the energy M and the inverse width B, is clearly seen. In
agreement with the results of the numerical simulation,
the position of the soliton x, first moves into the over-
dense region of the plasma (x >0), and the phase ¢, is
nearly constant. At later times ¢ > 2, the phase shows the
expected asymptotic behavior in the convective region.

Although we started with N(0)=1 (one soliton), the
soliton number is not conserved. It converges to an
asymptotic value N > 1. This reveals the fact that the
test function (64) describes, at least very roughly, a mul-
tisoliton solution.

In the second step we derive, based on the results of
the IST diagnostic of the numerical simulation, a non-
linear map, which describes the successive generation of
solitons at the critical density near x =0. The main idea
is to construct (at the end of the creation of one soliton at
t=t,) from the set of the collective coordinates
{N(t,),M(t,),k(t,),xy(t,),p(t,)} a new set {N(¢y), ...}
of initial conditions and solve again the system of equa-
tions of motion. If we call the solution of the system
(78)-(82) {S‘(¢)} [for the initial conditions {S(z})}], the
nonlinear map T can be formally written as

(STt =T({St))}) . (88)

If, e.g., the map (88) converges to a fixed point, the low-
dimensional model describes the periodic soliton genera-
tion and emission.

The procedure discussed above is similar to a method
firstly presented by Shaw [35], to our knowledge, for the
description of a dripping leaky faucet. There we also
have a slow increase of the water drops and an abrupt
breakoff. Similarly, here the emission phenomena of the
solitons are so short in comparison with the time needed
for their generation that an energy transfer between the
driver and the solution plays a negligible role. Therefore
the description of the instantaneous emission of solitons
by a map, which implies a vanishing emission time, is in
good agreement with the numerical simulation. Based on
this procedure Bussac et al. [33] also constructed a map,
which can only model periodic soliton generation for all
values of p >0.25. Larroche and Pesme [36] examined
the model of Larroche et al. [32] and found a periodic
and a two-periodic regime, but there is no quantitative
agreement of the bifurcation values with the numerics,
and the model fails to describe chaotic soliton generation
at the critical density. In our opinion, the main reasons
for this failure are the pinning of the position of soliton
generation to a value X =0 (in their notation, where X is
the position of the soliton in its rest frame), the setting of
the linear x-dependent phase equal to zero in contradic-
tion to the numerical results, and the adding of a chirp in
the phase proportional to x2. The latter is necessary for
them because they use the varlatlon of-action method, for
which the trial function without chirp leads to a strong
coupling of amplitude and width.

To avoid these difficulties and to construct a consistent



47 NONLINEAR MODE CONVERSION WITH CHAOTIC SOLITON . .. 1989

FIG. 13. Dynamic of the collective coordi-
nates N (¢) soliton number, M (¢) soliton ener-
gy, B(t) inverse soliton width, x, soliton posi-
tion, and ¢, space-independent soliton phase.
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FIG. 13. (Continued).
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model we refer to the results of the diagnostic with IST
presented in Sec. IV. According to the invariance under
time translations we set, without loss of generality, t{) =
for all i. The definition of the emission time is in princi-
ple impossible from the numerical simulation. Due to
this reason we identify the emission time ¢/ with the time
t., i.e., the time of the maximum value of the energy for
the generated solitons. Starting at ¢=0 with
B(0)=By=2n(0) and ¢@y(0)=¢gy, the energy M (t) in-
creases and reaches its maximum value at t=t, =t¢},
defined by

d2
dr?

d

—M =0,
dt

gl
t te

<0.

=i
t—te

(89)

From (89) and (79) one gets @o(t!)=27.

The emission of a soliton at ¢t =t/ is characterized by
the reduction of the soliton number N't!(zi*!)
=N¥ti)—1. This is equivalent to the reduction of the
number of discrete eigenvalues £, of the IST by one [30].
For the location of generation of a new soliton we use, in

4.50 5.00

agreement with the numerical simulations, the position of
the previous emitted soliton x{™1(¢{"!)=x{(z/) and fix
the product of the x-dependent phase with the position,
ie, KTl x it (¢l )=C=const. In summary we
end up with the nonlinear map

NITIi+!) Nit}) Nith—1
Mi+1(té')+1) Mi(tei) BO[Ni(té)—l]Z
PN el |=T (ki) |= |Clxh(e)]7!
xptHEETh) x6(2l) xb(2h)

@o g™ Polte) Poo

(90)

The phase space of the map (90) is of dimension three,
namely {N,k,x,}, and the parameter space is of dimen-
sion four {p,B,,C,pu}. This is in contradiction to the
DNLIS Eq. (42), which includes only one parameter p,
and we therefore must fix a relation between B, C, @q,
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and p. Concerning this we choose the smallest detected
value for the inverse width B;=0.2. The constant
C=ki(th)x5(2{) is set to the mean value observed in the
IST diagnostic C=0.13. There is no strong qualitative
dependence of the results on these values. In the ranges
0.05<B;<0.4 and 0.02 < C <0.5 we observe only a shift
of the bifurcation points. (In contrast, the results are
very sensitive to a change in the phase ¢g,) The non-
linear map converges only for values ¢, in the range
3m/2—0.8 <@yu<37/2+0.8. Due to the fact that there
is no further indication from the numerical simulations
we choose @y =const=37/2+C. As initial conditions
for the iteration we set always No(t8)=2, k°(t8)=0. 16,
and x3(¢3)=0.5.

With these settings we obtain the following behavior of
the low-dimensional model. There exists a threshold
p.=0.34 for soliton generation. [Below this value, the
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soliton number N'(t)) iterates to the unphysically value
lim,  , ,Nt))=—c.] For small nonlinearities, there
exist no solitons in agreement with the numerical simula-
tion.

In the range 0.34 <p < 1.1, the model converges within
a few iterations to a fixed point (see Fig. 14), and de-
scribes the periodic soliton generation at the critical den-
sity near x =0. In Fig. 15 the period T(p) is depicted for
both the low-dimensional model and the DNLIS equation
itself.

At p~1.1 the fixed point becomes unstable. The non-
linear map converges to two fixed points (Fig. 14) and we
obtain, in agreement with the results of Sec. III, a subhar-
monic bifurcation. The new dynamical state of the sys-
tem, being caused by a period doubling, is stable up to
p~=1.18.

Our low-dimensional model undergoes further subhar-

e ® @ ® o o o ¢ o o o 0 e 0 0 e e e o o
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FIG. 14. Iteration of collective coordinate
x§(0). (a) Periodic regime, (b) two-periodic re-
gime.
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monic bifurcations to periods 4, 8, and 16. This indicates
the classical period-doubling route to chaos. The
discrepancies between the model and the DNLIS Eq. (43)
in the small-parameter range 1.18 <p <1.23 arises, in
our opinion, from the fact that we choose a very special
route through the four-dimensional parameter space
{p,Bo,C,pu}. (This is similar to, e.g., fixing ) and vary-
ing only K in the standard circle map [37]).

At p =1.23 our low-dimensional model undergoes a bi-
furcation to a chaotic regime. Figure 16 shows exem-
plarily the results for the position x{™'(z{*!) versus
xi(tl) for p=1.24. If we interpret the iteration results
as values of a time series with time-step one, we obtain
the Fourier spectrum depicted in Fig. 17.

The nonlinear map, presented in this section, is, to our
knowledge, the first procedure that describes chaotic soli-

demonstrates first that the dynamics of the nonintegrable
physical system is dominated by the solitons of the corre-
sponding integrable equation, and second, that the whole
dynamics can be described with a few degrees of freedom.
The qualitative and quantitative good agreements be-
tween the numerical simulations and the low-dimensional
model are shown in Fig. 18.

VI. SUMMARY

In this paper we have investigated the interaction of in-
tense electromagnetic waves with inhomogeneous plas-
mas. Near the critical density, the resonant absorption of
electromagnetic waves and the corresponding mode con-
version to an electrostatic plasma wave can be described
by the driven nonlinear inhomogeneous Schrodinger

ton generation within a low-dimensional model. This equation.
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FIG. 15. Period time as function of bifurca-
tion parameter p. (a) Numerical solution, (b)
low-dimensional model.
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FIG. 16. Iteration of collective coordinate
x,(0) in the chaotic regime. (a) Successive
iterations, (b) chaotic attractor.

FIG. 17. Spectrum of the solution x§’(0)
depicted in Fig. 16.
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FIG. 18. Comparison between the numerical simulation of
the DNLIS equation and the low-dimensional model.

By solving the DNLIS equation numerically, we stud-
ied the dynamics of the system in dependence on the con-
trol parameter p. The stationary Airy-type solution, for
small values of p, in the near-linear case becomes unstable
and bifurcates into a limit cycle. The spatial structure of
the solution is dominated by separated pulses which are
emitted periodically from the resonance point at the criti-
cal density. By further increasing p, one period doubling
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occurs. After that the Newhouse-Ruelle-Takens route to
chaos via quasiperiodic pulse emission has been observed.
We calculated the dimension of the chaotic attractor near
the onset of chaos.

The spatial structure of the numerically observed solu-
tions has been examined by a nonlinear diagnostic tech-
nique. For the latter we developed an algorithm, which
is based on the inverse scattering transform for the NLIS
equation, i.e., the corresponding integrable form of the
DNLIS equation. We have shown that in the underdense
plasma region the numerically observed pulses are the
single-soliton solutions of the integrable NLIS equation.
At the critical density, where the solitons are generated,
the interaction of several solitons takes place. New soli-
tons are generated at the position of the rightmost soliton
with a nonvanishing x-dependent phase.

These results, together with the low attractor dimen-
sion in the vicinity of the transition to chaos, indicate the
existence of a finite-dimensional model, which should de-
scribe the chaotic soliton generation. We derived a non-
linear map, which is based on the low-dimensional
description of soliton dynamics by collective coordinates.
Its qualitatively and quantitatively good agreement with
the numerics demonstrates that the dynamics of the
nonintegrable model is dominated by soliton solutions of
the corresponding integrable equation. Moreover, these
results show that the nonlinear mode conversion can be
studied with the help of low-dimensional models. The
method we presented here will be of use also for other
soliton-generation problems.
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